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Testing Gravity Against Early Time Integrated Sachs-Wolfe Effect
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A generic prediction of general relativity is that the cosmological linear density growth factor
D is scale independent. But in general, modified gravities do not preserve this signature. A scale
dependent D can cause time variation in gravitational potential at high redshifts and provides a
new cosmological test of gravity, through early time integrated Sachs-Wolfe (ISW) effect-large scale
structure (LSS) cross correlation. We demonstrate the power of this test for a class of f(R) gravity,
with the form f(R) = −λ1H

2

0 exp(−R/λ2H
2

0 ). Such f(R) gravity, even with degenerate expansion
history to ΛCDM, can produce detectable ISW effect at z >

∼
3 and l >

∼
20. Null-detection of such

effect would constrain λ2 to be λ2 > 1000 at > 95% confidence level. On the other hand, robust
detection of ISW-LSS cross correlation at high z will severely challenge general relativity.

PACS numbers: 98.65.Dx,95.30.Sf

Introduction.— Cosmological observations provide
unique tools to study gravity at >∼ Mpc scales. General
relativity, with the aid of the cosmological constant, or
dark energy with equation of state w ∼ −1, successfully
reproduces the accelerated expansion of the Universe, in-
dicated by SN Ia observations[1], along with the flatness
of the Universe measured by the cosmic microwave back-
ground (CMB)[2] and distance measured by the baryon
oscillations[3]. However, these observational evidences
mainly constrain the mean expansion history of the Uni-
verse and can be reproduced by modified gravity such
as brane world DGP theory [4] and generalized f(R)
gravity[5]. Essentially, the large scale structure (LSS)
of the universe, such as weak gravitational lensing[6], is
required to break this degeneracy.

General relativity imprints a unique signature in the
LSS, which is scale independent linear density growth fac-
tor D at sub-horizon scale after matter-radiation equal-
ity epoch[7]. Modifications to general relativity not only
changes the amplitude of D, but in general, causes D to
be scale dependent. This unique feature of modified grav-
ity has already been noticed in phenomenological theory
of modified Newtonian potential[8] and in DGP[9]. It can
be detected by weak gravitational lensing, galaxy clus-
tering [8] and late time integrated Sachs-Wolfe (ISW)
effect[9]. Counter-intuitively, in this paper, we show that
modified gravity can produce a detectable early time ISW
effect.

We investigate a class of f(R) gravity with action

L =

∫

(R+ f(R))
√
gd4x+ Lmatter , (1)
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and field equation

(1+fR)Ruv−
guv
2

(R+f−22fR)−fR;u;v = 8πGTuv , (2)

where fR ≡ df/dR. We design f(R) =
−λ1H

2
0 exp(−R/λ2H

2
0 ), where λ1,2 are two positive di-

mensionless constants and H0 is the Hubble constant at
present. If we choose λ2 ≪ Rsolar/H

2
0 ∼ ρsolar/ρc >∼ 1010

(ρc is the critical density of the Universe), the exponen-
tial damping in f(R) guarantees that there is no effect
of f(R) to our solar system and the exponential f(R)
can pass all solar system tests. For the f(R) gravity,
the application of Birkhoff theorem to perturbations of
a spherically symmetric region leads to scale indepen-
dent D [10]. But, as pointed out by [11], this approach
may be problematic. We clarify this issue by solving the
structure evolution of the fully covariant f(R) gravity
to linear order. We find that D shows nontrivial scale
dependence[12].

The H-z relation of the f(R) gravity.— Cosmological
observations prohibit strong deviation of f(R) from a cos-
mological constant. At the limit that R(a ≡ 1/(1 + z) =
1) ≪ λ2H

2
0 , the H-z relation of f(R) gravity can have

the same asymptotic behavior as that of ΛCDM. At low
redshift where R(a) ≪ λ2H

2
0 , f(R) behaves as a cosmo-

logical constant and the H-z relation resembles that of
ΛCDM. At high redshifts where R ≫ λ2H

2
0 , f(R) → 0

and H(z) → Ω
1/2
0 (1+z)3/2. Deviation from ΛCDM hap-

pens at some intermediate redshifts where R(a) ∼ λ2H
2
0

and vanishes toward both higher and lower z. We quan-
tify their difference by solving Eq. 2 of a flat universe to
zero order

H2 +
f

6
− ä

a
fR +HḟR = H2

0Ω0a
−3 . (3)

This equation can be rewritten as y = Ω0 − C(y(a)),
where y ≡ a3H2, C(y(a)) ≡ [f/6 − äfR/a + HḟR]a3

and Ω0 is the dimensionless matter density at present.
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FIG. 1: The H(z)-z relation and structure growth in the ex-
ponential f(R) gravity. Top left panel: H-z. λ2 → ∞ corre-
sponds to ΛCDM cosmology. Top right panel: Q(k, a) ∝ k2,
which describes the main effect of f(R) gravity to structure
formation. We plot the result of k = 0.01h/Mpc. Bottom left
panel: fR(a), which determines the effective Newton’s con-
stant Geff = G/(1 + fR). For λ2

>
∼

100, its effect to structure
formation can be neglected. Bottom right panel: D(k, a)/a
(λ2 = 1000), where the linear density growth factor D is nor-
malized such that D → a when a → 0.

Since C(y(a)) is completely determined once y as a func-
tion of a is given, Eq. 3 can be solved iteratively by
the iteration relation y(i+1) = Ω0 − C(y(i)). To mimic a
ΛCDM universe, we fix λ1 by requiring f(R(a = 1)) =
−6H2

0 (1−Ω0). The iteration converges quickly by taking
the initial guess y(0) = Ω0 + (1 − Ω0)a

3. For λ2 ≥ 100,
y(1) is accurate to ∼ 1%. As expected, for λ2 ≥ 100, the
H(z)-z relation is almost identical to the corresponding
ΛCDM cosmology (Fig. 1). Such f(R) gravity can not
be distinguished from ΛCDM by inflation, big bang nu-
cleosynthesis (BBN), primary CMB, SN Ias and other
measures of H-z relation.

The large scale structure of the f(R) gravity.— We will
show that, even with this degeneracy in H-z relation and
solar system behavior, the LSS of the f(R) gravity could
be significantly different to that of ΛCDM. We choose
the Newtonian gauge

ds2 = −(1 + 2ψ)dt2 + a2(1 + 2φ)dxi,2 . (4)

There are four perturbation variables φ, ψ, the matter
over-density δ and the (comoving) peculiar velocity con-
vergence θ.

In general relativity, φ = −ψ, as long as there is no

anisotropic stress. But in modified gravity, this relation
breaks in general. ij (i 6= j) component of Eq. 2 pro-
vides the relation between φ and ψ. For f(R) gravity,
due to non-vanishing fR;i;j (i 6= j), φ-ψ relation becomes
scale dependent. Throughout this paper, we neglect time
derivative terms with respect to spatial derivative terms
of corresponding variables. This simplification holds at
scales k >∼ aH <∼ 10−3h/Mpc. Since we will focus on
the ISW effect at l >∼ 20 and z >∼ 3 where the relevant
k >∼ 5× 10−3h/Mpc, this simplification is sufficiently ac-
curate. We then obtain

φ+ ψ =
fRRc

2

1 + fR

2

a2
(∇2ψ + 2∇2φ) . (5)

In Fourier space, this reads ψ = −φ(1 − 2Q)/(1 − Q),
where Q(k, a) ≡ −2fRRc

2k2/(1 + fR)a2 and fRR ≡
d2f/dR2. For clarity, we explicitly show the speed of
light c. We will see that this scale dependent ψ-φ rela-
tion has profound effect on the LSS. Combining Eq. 5
and the tt component of Eq. 2, we obtain the new Pois-
son equation

∇2(φ− ψ) = −3H2
0Ω0

1 + fR
a−1δ . (6)

The energy-momentum tensor is still conserved and pro-
vides the remaining two equations:

δ̇ + θ = 0 , θ̇ + 2Hθ +
1

a2
∇2ψ = 0 . (7)

Combining all 4 equations, we obtain the main equation
of this paper:

δ
′′

+ δ
′

(
3

a
+
H

′

H
) − δ

a2

1 − 2Q

2 − 3Q

3H2
0Ω0

a3H2(1 + fR)
= 0 , (8)

where ′ ≡ d/da. In general relativity, Q = 0, so D is scale
independent at scales k >∼ aH/c, no matter what the
form of dark energy is. But in f(R), the scale dependent
Q(k, a) induces nontrivial scale dependence to D. This
behavior can not be obtained by a simple change in the
effective Newton’s constant. Furthermore, the correction
Q has a nontrivial dependence on a. This is hard to
realize by simply changing the form of the Newtonian
potential (e.g. to Yukuwa potential).

Since fRR < 0, there exist one apparent singularity

Q = 2/3 in Eq. 8, where only δ = 0 solution is accepted
and two at Q = 1/2, 1 in the ψ-φ relation, where only
ψ = φ = 0 solution is accepted. We leave this issue
alone until the discussion section. For the moment, we
take a modest goal by only using regions where Q < 1/2
to constrain f(R). For λ2 = 1000, this constrains us to
region where k ≤ 0.012h/Mpc.

Hereafter, we fix λ2 = 1000. At z ≫ 1, H ∝ a−3/2,
D ∝ a1−η when η ≡ 3Q/5(2 − 3Q) ≪ 1. Thus gravita-
tional potential decays at high redshifts with rate ∝ a−η
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FIG. 2: The ISW effect. λ2 = 1000 is adopted. Top left
panel: D/a − dD/da, which determines the sign and ampli-
tude of the ISW effect. D is normalized such that D → a
when a → 0. Bottom left panel: the ISW effect. Bottom
right panel: Cumulative S/N of the ISW-LSS cross correla-
tion measurements.

and causes an observable integrated Sachs-Wolfe (ISW)
effect. At later time when R <∼ λ2H

2
0 , Q → 0 (Fig. 1),

the evolution of D approaches that of ΛCDM. For the
exponential f(R), Q(a) peaks at z ≫ 1 (Fig. 1), so the
resulting ISW effect peaks at z ≫ 1, as contrast to that of
ΛCDM cosmology or dark energy models with w ∼ −1.
This provides us a unique way to test this form of f(R).
We solve Eq. 8 numerically. Initial condition is set to
normalize D → a when a→ 0.

The integrated Sachs-Wolfe effect. — Time variation
in ψ − φ causes a fractional CMB temperature variation
[14]

∆T

TCMB
=

∫

[ψ̇ − φ̇]adχ . (9)

Here, χ is the comoving angular diameter distance. Since
both ψ − φ and the LSS trace the underlying matter
distribution, there exists an ISW-LSS cross correlation,
with power spectrum

l2

2π
CISW−LSS
l =

π

l

∫

∆2
(ψ̇−φ̇)δLSS

(
l

χ
)WLSS(χ)a2χdχ .

(10)
Here, δLSS is the density fluctuation of the LSS trac-
ers, WLSS is the corresponding weighting function
and ∆2

(ψ̇−φ̇)δLSS

is the corresponding 3D power spec-

trum(variance). The above formula adopts the Limber’s

approximation, which is sufficiently accurate to serve for
our interest at l ≥ 20. The amplitude and sign of the
ISW effect is determined by AISW ≡ D/a− dD/da. Pos-
itive AISW means positive correlation between ISW and
LSS. For k >∼ 0.007h/Mpc, AISW has a bump at z ∼ 6,
whose amplitude increases towards small scales (large k).
This boosts early time small scale ISW signal (Fig. 2).

Here we estimate the S/N of the ISW-LSS cross cor-
relation measurements. Since the exponential f(R) does
not affect physics at z >∼ 100, we adopt the same pri-
mordial power spectrum with power index n = 1, the
same transfer function BBKS [15] and the same ampli-
tude at ai = 0.01, as that of the ΛCDM cosmology.
The LSS tracers we choose are 21cm emitting galaxies
at 3 < z < 5, which will be measured by proposed 21cm
experiments such as Square Kilometer Array[16]. Singu-
larities presented in the perturbation equations limit us
to l < 60, where one can neglect shot noises of both the
CMB and LSS. At this limit, the S/N of each l is

(

S

N

)2

≃ (2l+ 1)fskyr
2

1 + CCMB
l /CISW

l

(11)

where CCMB
l , CISW

l and r are the primary CMB power
spectrum, ISW power spectrum and the cross correlation
coefficient between ISW and LSS, respectively. Since r
has very weak dependence on galaxy bias, the estimation
presented here is weakly model dependent. We disregard
signals from l < 20, to reduce confusions of ΛCDM cos-
mology or dark energy models. For sparse galaxy sam-
pling which is sufficient for our purpose, SKA is able to
cover the whole sky. So we assume that fsky = 1. The

cumulative
∑lmax

20 (S/N)2 is shown in Fig.2.
The ISW signal peaks at z >∼ 3 and increases toward

high l. This is hard to mimic by ΛCDM, dark energy
or many forms of modified gravity. (1) For ΛCDM or
dark energy models with w <∼ −1, at z >∼ 3, the ISW
effect effectively vanishes. Fig. 2 shows that ΛCDM can
be distinguished from the λ2 = 1000 f(R) gravity with
> 2σ confidence by the ISW-21cm emitting galaxy cross
correlation. (2) For dark energy models with w >∼ −1,
AISW does not decrease as fast as that of ΛCDM. But
the ISW signal (including contributions from dark energy
fluctuations) decreases toward high l [17] and one does
not expect a detectable ISW effect. (3) For DGP, a neg-
ative ISW-LSS cross correlation may be expected[9]. (4)
For generalized f ∝ (αR2 + βRabR

ab + γRabcdR
abcd)−n

(n > 0), the ISW effect vanishes at high z because the
f correction decreases much faster than the exponential
f(R). So we expect that null detection of ISW-LSS cross
correlation at l ≥ 20 and z ≥ 3 would constrain λ2 to
λ2 > 1000 at > 2σ confidence level. On the other hand,
a detection of such cross correlation would present as a
severe challenge to general relativity.

Discussion.— The scale dependence of D, as an unam-
biguous signature of modified gravity, can in principle be
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measured from weak gravitational lensing by the mean
of lensing tomography. Since φ is no longer equal to −ψ,
we provide the general form of the lensing transformation
matrix Aij

Aij − δij =

∫ χs

0

dχ(φ− ψ),ijW (χ, χs) , (12)

where W (χ, χs) = χ(1 − χ/χs) is the usual lensing ker-
nel. All basic lensing theorems remain unchanged. For
example, lensing shear field is still curl free (if neglecting

second order corrections such as Born correction). For
f(R) gravity, relation between the lensing convergence
κ = 1 − (A11 + A22)/2 and the matter over-density re-
sembles that of the general relativity, with

κ =
3

2
H2

0Ω0

∫

δa−1W (χ, χs)(1 + fR)−1dχ . (13)

It is interesting to see how well weak lensing alone can
constrain modified gravity. For the exponential f(R), one
complexity is that lensing mainly probes LSS at z <∼ 1,
where Q is small and the deviation from a scale indepen-
dentD is small, so the constraints may be weak. This can
be significantly improved by gravitational potential re-
constructed from primary CMB. Combining lensing and
CMB measurements, it is very promising to measure the
evolution of the gravitational potential between z = 1100
and z ∼ 0 robustly. This will put strong constraints on
the nature of gravity. Unfortunately, due to singularities
in the perturbation equations, we are limited to scales
k <∼ 0.012h/Mpc or l <∼ 20 at z <∼ 1 (for λ2 = 1000). In-
formation contained in this region is very limited and
could be contaminated by other physics such as dark
energy fluctuations. Solving the field equation crossing
those singularities consistently is nontrivial. We leave
this work for future study.

The Q = 1/2, 2/3, 1 singularities may be caused by
awkward gauge choice, the neglecting of time derivative
terms with respect to corresponding spatial derivative
terms, or the failure of the perturbation approach. For
example, for Q = 2/3, the only solution δ = 0 does
not depend on initial conditions. This could be caused
by neglecting time derivative times, which erases some
degree of freedom. These issues require detailed study.
But if these singularities do exist, the LSS can rule out
most f(R) gravities as alternatives to dark energy or gen-
eral relativity, because the existence of singularities in
the perturbation equations is generic in many, if not all,
f(R) gravities which can reproduce the expansion his-
tory of the Universe. To produce a similar expansion
history, (1) R should increase when a decreases and (2)
f(R(a = 1)) < 0 in order to have an accelerated expan-
sion at present and f(R(a → 0)) → 0 in order not to
affect inflation, BBN and primary CMB. This results in
fR(a) > 0 at least at some early epoch a+. To avoid sin-
gularity, fRR ≥ 0 must be satisfied at all epochs. Thus

fR(a < a+) ≥ fR(a+) > 0. On the other hand, when
a → 0, R ∝ a−3 and increases very quickly. So, f in-
creases toward high redshift and crosses over zero at some
epoch and then increases faster than a−3. This contra-
dicts our expectation.

To demonstrate the power of LSS to constrain grav-
ity, we adopt a conservative requirement to avoid sin-
gularities at k < ks. At the limit that λ2 ≫ 1, Q
peaks at a = (2λ2/9Ω0)

−1/3 and the peak amplitude is

≃ 12(1 − Ω0)(2/9Ω0e)
2/3λ

−4/3
2 (ck/H0)

2, where we show
the speed of light c explicitly. To avoid singularities at
k < ks,

λ2 ≥ 2.5 × 105

(

ks
h/Mpc

)3/2

(14)

should be satisfied.
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